40Ar/39Ar geochronologic constrains of a Variscan transpression in Central Stara Planina Mountain

40Ar/39Ar изотопни данни за проява на Херцинска транспресия в Централна Стара планина

Ianko Gerdjikov1, Gilles Ruffet2, 3, Anna Lazarova4, Dian Vangelov4, Eleonora Balkanska4, Kamen Bonev4
Янко Герджиков1, Жил Рюфет2, 3, Анна Лазарова4, Диан Вангелов4, Елеонора Балканска4, Камен Бонев4

1 Sofia University, Dept. of Geology and Paleontology; E-mail: janko@gea.uni-sofia.bg; dedo@gea.uni-sofia.bg
2 CNRS (CNRS/INSU) UMR 6118, Géosciences Rennes, 35042 Rennes Cedex, France
3 Université de Rennes 1, Géosciences Rennes, 35042 Rennes Cedex, France
4 Geological Institute, BAS; E-mail: alazarova@geology.bas.bg
5 Earth Sciences Hazard Group; E-mail: eshgroup@gmail.com

Key words: Variscan tectonics, 40Ar/39Ar geochronology, Balkanides.

Along the southern foot of Central Stara Planina Mountain the contact between the high-grade and low-grade metamorphic complexes marks an important Variscan structure with an orogenic-scale significance. Interpreted for years as Late Alpine fault, in fact the contact represents a km-scale ductile shear zone. Kinematic data indicate both top-to the W-NW and top-to the N shearing with syn-kinematic green-schist (or lower) facies recrystallization.

Two segments of this structure – western and eastern – can be distinguished on the basis of spatial arrangement and geometry (Lazarova et al., 2010). The western segment represents the Stargel-Bolvunya tectonic zone (SBTZ), where stratigraphical relations unambiguously indicate Late Variscan age (336–315 Ma) of the shearing along the contact. Unlike the western segment, there is no direct contact between high- and low-grade complexes in the eastern one. Here, the low-grade complex shows a higher grade fabric which could be ascribed to both the emplacement of syn-kinematic granitoids and the exposure of deeper levels of the contact. The presented data suggest that shearing along the SBTZ occurred rather shortly after the thermal peak of the metamorphism in the Variscan basement of Srednogorie Mountain. These ages are at about 450–500 °C estimated ambient temperature, similar to estimated muscovite isotopic closure temperature) dates dyke emplacement and concomitant shearing. The second sample is a porphyroclastic gneiss located next to the contact with low-grade rocks. The fabric of the rock indicates a remarkable destruction of the precursor migmatitic layering. Due to intense shearing the leucosomes were extremely disrupted and bounded as the process was related with the growth of large flakes of white mica. The 40Ar/39Ar dating of these large grains suggests crystallization of muscovite at ca. 334 Ma. Experiment clearly expresses a subsequent disturbance but its age cannot be specified.

40Ar/39Ar analyses of muscovites from variously deformed granitoids all yield disturbed age spectra. Such disturbances could be related to Alpine tectonic events, but unfortunately for now 40Ar/39Ar experiments are not discriminant. On the other hand, a muscovite from a granitoid sealing the SBTZ yields a slightly disturbed age spectrum that nevertheless could suggest a Lower Triassic (ca. 247 Ma) initial crystallization age.

Two samples from the eastern segment were collected so far away from the zones affected by obvious Alpine overprint as it is possible. Despite disturbed and difficult to interpret age spectra the muscovite 40Ar/39Ar results seem characterizing a Late-Variscan cooling.

The presented data suggest that shearing along the SBTZ occurred rather shortly after the thermal peak of the metamorphism in the Variscan basement of Srednogorie Mountain. These ages are at about
20 Ma older than those reported by Velichkova et al. (2004). This fact as well as the reported here ages indicate prolonged and complex exhumation path of the consolidated Variscan crust. We suggest that the both segments of the orogen-scale zone were active at the same time but at distinct crustal levels. This interpretation needs additional supporting by quantitative data. In terms of Alpine perspective, there is no doubt that better understanding of the Variscan evolution and structure will improve our knowledge of Early and Late Alpine compressional tectonics and the estimates of associated displacements.

Acknowledgements: The study is supported by the grant VU-13/06 by the Ministry of Education and Science.

References
