First magnetostratigraphic results of the Berriasian in the Western Balkan Mts, Bulgaria

Първи магнитостратиграфски резултати за Бериаския етаж в Западна Стара планина, България

Jacek Grabowski1, Peter Schnabl2, Iskra Lakova3, Katarzyna Sobień1, Silviya Petrova3
Яцек Грабовски1, Петер Шнабл2, Искра Лакова3, Катаржина Собиен1, Силвия Петрова3

1 Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland; E-mail: jacek.grabowski@pgi.gov.pl; katarzyna.sobien@pgi.gov.pl
2 Institute of Geology of the Academy of Sciences of the Czech Republic, v.v.i., Rozvojová 269, 165 000 Praha 6, Czech Republic; E-mail: schnabl@gli.cas.cz
3 Geological Institute of the Bulgarian Academy of Sciences, Acad. G. Bonev str., bl. 24, 1113 Sofia, Bulgaria; E-mail: lakova@geology.bas.bg; silviya_p@geology.bas.bg

Key words: magnetostratigraphy, calpionellids, Berriasian, West Balkan Mts, Tethyan Realm.

Introduction and previous studies

The purpose of this integrated magnetostratigraphic and calpionellid study of the Upper Berriasian in Bulgaria is to provide data on magnetic polarity zones directly tied to calpionellid bioevents and zonation. The lower Berriasian and the Upper Tithonian have been largely worked in terms of magnetostratigraphy and calpionellids in the Western Tethyan Realm in relation to definition of the base of Berriasian (Grabowski, 2011).

The Upper Berriasian magnetostratigraphy remains only scarcely presented in the literature. Earlier results of magnetic polarity zones integrated to calpionellids were from the Southern Alps in Italy (Channell, Grandesso, 1987) where magnetozones from M19n to M13r were correlated with the first occurrences (FO) of subzonal calpionellid index-species, e.g. the sections of Xausa and Frisoni. Grabowski and Pszczółkowski (2006) and Grabowski et al. (2013) published magnetic zones from M18r to M16n correlated with calpionellids in the Pośrednie III and Rówienka sections, Tatra Mts in Poland. Berriasian magnetic zones from M19n to M17r were recorded integrated with calpionellids in the Hlboća section in the Carpathian Mts in Slovakia (Grabowski et al., 2010).

Upper Berriasian magnetic polarity zones integrated with nannofossils are known from the Southern Alps in Italy: Bosso and Arcevia sections (Speranza et al., 2005), Foza and Frisoni sections (Channell et al., 2010).

Results and conclusion

Subject of the present study is the lower part of the Salash Formation in Barlya section, Western Balkan Mts. Calpionellid biostratigraphy (Lakova, Petrova, 2013) has shown mid to Late Berriasian age of the part chosen for magnetostratigraphic examination. A 36-m thick interval has been sampled, the lower 5–6 m representing a transition between the Glozhene and Salash formations, and the rest – the basal part of typical Salash Formation, that is thin-bedded alternation of micritic and clayey limestones with chert nodules. Samples for magnetic studies have been collected at average intervals of 0.25 m, and calpionellid samples – at average intervals of 1.0 m from the drill core.

Magnetozones from M17r to M16n have been recovered. These correlate with the calpionellid Elliptica, Simplex and Oblonga subzones. Previous results have confirmed that the FO of Calpionellopsis simplex is in M16r and the FO of Calpionellopsis oblonga – in M16n. Fig. 1 shows correlation of GPTS for the Berriasian (Gradstein et al., 2012), previously reported Upper Berriasian magnetic zones and calpionellids and the preliminary results of Barlya section. The presence of M15r magnetzone is disputable and its presence must be confirmed in subsequent studies of the upper part of Salash Formation.

Even the base of Berriasian was shifted upper in the latest GTS (Gradstein et al., 2012) at the base of M18r as a working proposal of defining the J/Cr boundary it did not change the volume of the Upper Berriasian
as involving magnetic polarity zones from M16r to M14r, Boissieri ammonite zone and its equivalent the Calpionellopsis Zone. Magnetostratigraphy of the Barlya section is to be completed in order to cover the Berriasian/Valanginian boundary interval.

Acknowledgements: This study is undertaken with financial support from the National Science Centre, Poland (project no. DEC-2011/03/B/ST10/05256).

References


